On Box-Cox Transformation for Image Normality and Pattern Classification
نویسندگان
چکیده
منابع مشابه
Properties of the Box-Cox transformation for pattern classification
The Box–Cox transformation [1,2] (Box and Cox, 1964; Sakia, 1992) has been regarded as a parametric pre-processing technique aimed at making the distribution of a set of points approximately Gaussian. Since normality represents an assumption underlying many statistical data analysis tools, such technique has been widely applied in different fields of Computer Science. In this paper we will prov...
متن کاملA new approach to the Box–Cox transformation
We propose a new methodology to estimate λ, the parameter of the Box–Cox transformation, as well as an alternative method to determine plausible values for it. The former is accomplished by defining a grid of values for λ and further perform a normality test on the λ-transformed data. The optimum value of λ, say ∗ λ , is such that the p-value from the normality test is the highest. The set of p...
متن کاملPredicting a future lifetime through Box-Cox transformation.
In predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transformation method provides a simple and unified procedure that is shown in this article to meet or often outperform the corresponding frequentist solution in terms of coverage probability and average length of prediction intervals. Kullback-Leibler information and second-order asymptotic expansion are used to j...
متن کاملImproving your data transformations: Applying the Box-Cox transformation
Many of us in the social sciences deal with data that do not conform to assumptions of normality and/or homoscedasticity/homogeneity of variance. Some research has shown that parametric tests (e.g., multiple regression, ANOVA) can be robust to modest violations of these assumptions. Yet the reality is that almost all analyses (even nonparametric tests) benefit from improved the normality of var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3018874